Projective maximal right ideals of self-injective rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings with no Maximal Ideals

In this note we give examples of a ring that has no maximal ideals. Recall that, by a Zorn’s lemma argument, a ring with identity has a maximal ideal. Therefore, we need to produce examples of rings without identity. To help motivate our examples, let S be a ring without identity. We may embed S in a ring R with identity so that S is an ideal of R. Notably, set R = Z⊕S, as groups, and where mul...

متن کامل

Maximal Quotient Rings and Essential Right Ideals in Group Rings of Locally Finite Groups

MAXIMAL QUOTIENT RINGS AND ESSENTIAL RIGHT IDEALS IN GROUP RINGS OF LOCALLY FINITE GROUPS Theorem . zero . FERRAN CEDÓ * AND BRIAN HARTLEY Dedicated to the memory of Pere Menal Let k be a commutative field . Let G be a locally finite group without elements of order p in case char k = p > 0 . In this paper it is proved that the type I. part of the maximal right quotient ring of the group algebgr...

متن کامل

Fuzzy Maximal Ideals of Gamma Near-Rings∗

Fuzzy maximal ideals and complete normal fuzzy ideals in Γ-near-rings are considered, and related properties are investigated.

متن کامل

Right Self-injective Rings in Which Every Element Is a Sum of Two Units

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations of a vector space V over a division ring D is a sum of two units unless dim V = 1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s result generated quite a bit of interest in regular rings that have the property that every element is a sum of (two) units. Clearly, a ring R, having Z2 as...

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0360705-3